A note on Ramsey numbers for books
نویسندگان
چکیده
The book with n pages Bn is the graph consisting of n triangles sharing an edge. The book Ramsey number r(Bm, Bn) is the smallest integer r such that either Bm ⊂ G or Bn ⊂ G for every graph G of order r. We prove that there exists a positive constant c such that r(Bm, Bn) = 2n + 3 for all n ≥ cm.
منابع مشابه
Zarankiewicz Numbers and Bipartite Ramsey Numbers
The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...
متن کامل0 M ay 2 00 4 A Note on Ramsey Numbers for Books
The book with n pages Bn is the graph consisting of n triangles sharing an edge. The book Ramsey number r(Bm, Bn) is the smallest integer r such that either Bm ⊂ G or Bn ⊂ G for every graph G of order r. We prove that there exists a positive constant c such that r(Bm, Bn) = 2n + 3 for all n ≥ cm.
متن کاملThe Ramsey numbers of large trees versus wheels
For two given graphs G1 and G2, the Ramseynumber R(G1,G2) is the smallest integer n such that for anygraph G of order n, either $G$ contains G1 or the complementof G contains G2. Let Tn denote a tree of order n andWm a wheel of order m+1. To the best of our knowledge, only R(Tn,Wm) with small wheels are known.In this paper, we show that R(Tn,Wm)=3n-2 for odd m with n>756m^{10}.
متن کاملA note on small on-line Ramsey numbers for paths and their generalization
In this note, we consider the on-line Ramsey numbers R(Pn) for paths and their generalization. The standard on-line Ramsey game is played on an unbounded set of vertices, whereas the new variant of the game we consider is the game where the number of vertices is bounded. Using a computer cluster of 80 processors, we ‘calculated’ some new values for short paths, both for the generalized on-line ...
متن کاملOn Some Small Classical Ramsey Numbers
This note is a report on a computer investigation of some small classical Ramsey numbers. We establish new lower bounds for the classical Ramsey numbers R(3, 11) and R(4, 8). In the first case, the bound is improved from 46 (a record that had stood for 46 years) to 47; and in the second case the bound is improved from 57 to 58. The classical Ramsey number R(s, t) is the smallest integer n such ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Graph Theory
دوره 49 شماره
صفحات -
تاریخ انتشار 2005